前言

目前主流 AI 開發框架為 TensorflowPytorch,本章將教學如何在系統上安裝 Tensorflow。

如要運行在 GPU 上,系統需先安裝好 GPU 驅動,未安裝可參考此篇

推薦使用 Docker 的環境進行 Tensorflow 的開發,可參考此篇


安裝

系統環境

  • OS:Ubuntu 18.04 Desktop
  • GPU Driver:450.51.05
  • CUDA:10.2.89
  • cuDNN:8.0.0.180
  • Tensorflow:2.2

步驟

安裝相依性套件

1
2
apt-get update
apt-get install wget gnupg2

添加 NVIDIA 套件庫

1
2
3
4
5
6
7
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo dpkg -i cuda-repo-ubuntu1804_10.2.89-1_amd64.deb
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update

安裝 CUDA cuDNN

1
sudo apt-get install cuda-10-2 libcudnn8=8.0.0.180-1+cuda10.2 libcudnn8-dev=8.0.0.180-1+cuda10.2

此方法安裝 CUDA,將會自帶安裝 GPU 驅動。為避免蓋掉舊有的驅動,可從官網下載 run 檔手動安裝(記得將安裝驅動的選項關掉)。

手動安裝 CUDA cuDNN (選)

1
2
3
wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run
sudo apt-get install libcudnn8=8.0.0.180-1+cuda10.2 libcudnn8-dev=8.0.0.180-1+cuda10.2

將 CUDA 加進環境變數 ~/.bashrc

1
sudo vim ~/.bashrc
1
2
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

激活環境變數

1
source ~/.bashrc

檢查 CUDA 是否安裝成功

1
nvcc -V

安裝 Tensorflow

1
2
3
sudo apt update
sudo apt install python3-dev python3-pip
pip3 install tensorflow==2.2.0

檢查 Tensorflow 是否安裝成功

1
python3 -c "import tensorflow as tf; print(tf.__version__); print(tf.reduce_sum(tf.random.normal([1000, 1000])))"